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1 Introduction

In this presentation we summarize joint research efforts between scientists at the Thomas
Lord Research Center of the Lord Corporation and applied mathematicians in the Center
for Research in Scientific Computation (CRSC) at N.C. State University beginning in 1994
and continuing through the current efforts by the authors of this report. The research par-
ticipants from Lord were Lynn Yanyo, Mike Gaitens, Beth Munoz, and Oon Hock Yeoh,
while significant CRSC contributors include H.T. Banks (1994- ), Yue Zhang (1994-1997),
Nancy Lybeck (1995-1997), Laura Potter (1996-1998), Gabriella Pinter (1997- ) and Negash
Medhin (2000- ). As should be apparent from our outline below (presented in a somewhat

'htbanks@eos.ncsu.edu

2Corresponding author

3Plenary Lecture, The 47th European Study Group with Industry and the Mathematics for Industry
Workshop, August 24-29, 2003, Graasten, Denmark.

“ngmedhin@eos.ncsu.edu

Sgapinter@uwm.edu



Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
2003 2. REPORT TYPE 00-00-2003 to 00-00-2003
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Multiscale Considerationsin Modeling of Nonlinear Elastomers £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
North Carolina State University,Center for Research in Scientific REPORT NUMBER
Computation,Raleigh,NC,27695-8205

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 17
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



Multiscale Considerations 2

chronological format), this project is a prime example of one wherein a data-driven applica-
tion subsequently leads to new computational, theoretical and conceptual ideas. It results
in a multiscale framework that connects pseudo-phenomenological or phenomenological ap-
proaches to molecular considerations. Our focus in these efforts has been the understanding
of nonlinearity and hysteresis and the roles they play in the dynamic deformations of filled
rubber.

An important area where nonlinear models have a potential impact is the rubber indus-
try. Elastomeric materials can be found in diverse engineering applications, e.g., in springs,
bearings, shock absorbing bushes, helicopter rotor suspensions, tires, vibration suppression
devices, bridge supports. They appear both as passive damping devices and actively control-
lable smart materials. These new applications motivate the need for a better understanding
of the mechanical behavior of rubber-like composites which is a necessary first step in the
design of both passive and active material devices [1, 2]. The dynamic behavior of these
elastomers is very complex. They exhibit significant nonlinearities in both geometric and
material characteristics. Typical nonlinear behaviors of the stress and strain in rubber ma-
terials under finite deformation include a continuous increase of strain at decreasing rates
upon loading, variable magnitudes of strain subject to rates of loading and different loading
and unloading paths due to hysteretic memory effects. In addition, the current state of ma-
terial depends on the strain/strain-rate history, the type and amount of filler in the material
and the temperature. The nonlinear effects are particularly strong for large strains and for
highly-filled elastomers. We have attempted to accurately capture the nonlinear dynamic as
well as hysteretic effects which we discuss briefly next.

Hysteresis is a widespread phenomenon in science and engineering. It plays significant
roles in electromagnetics (polarization, conductivity) in dielectric and conductive materi-
als, in biological systems (time delays in disease pathogenesis, intracellular metabolic path-
ways, tissue viscoelasticity), in recent investigations of ecological migrations (diffusion with
integro-differential terms representing local episodic behavior) as well as in the deformations
of polymeric materials such as filled rubbers. Hysteresis, often referred to as “memory”,
does not involve physical memory mechanisms, but rather is a manifestation of “hidden” or
unmodeled internal or local dynamics. It is an embodiment of the multiscale aspects of mod-
els and phenomena. That is, one encounters Preisach to Boltzmann to internal dynamics to
molecular-based models as one moves from macro to micro to nano and molecular formula-
tions. Thus, approaches range from the phenomenological involving an input/output view-
point to a pseudo-phenomenological involving internal dynamics formulations of Boltzmann
hysteresis operators to physics-based models (e.g., the stick-slip models of Doi/Edwards and
Johnson/Stacer that are discussed below) at the molecular level for internal dynamics.

2 Models for elastomeric materials

Traditionally there are two approaches to modeling rubber materials. There are physics or
molecular-based theories [3, 4, 5] that try to describe the microscopic behavior of the particles
and fibers that constitute the material and there are phenomenological models that treat
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the material as a continuum [6, 7, 8, 9, 10, 11]. Phenomenological models are based on the
assumption that the material is isotropic, i.e., the long chain molecules are randomly oriented
in the unstrained state. Loading causes orientation of the molecules, but it is in the direction
of the loading, so the assumption of isotropy remains valid. Most such models utilize a strain
energy density to describe the state of the material. However, these strain-energy functions
can typically capture only the current state of the rubber and cannot distinguish between
different loading and unloading histories. Thus these models cannot accurately describe the
significant hysteresis exhibited by filled rubber samples.

2.1 Model development

In developing a model for the dynamic behavior of filled elastomers we considered two basic
deformations: extension and shear. Our hysteretic models were based on the basic models
developed by Banks et. al. in [12, 13]. First we considered the model of a rubber rod under
uniaxial tension. (Our shear results are summarized in Section 2.4.) The Timoshenko theory
for longitudinal vibrations of a rubber bar with a tip mass leads to

Pu 0 ou 0%u
pAcw—%<Acge(a )+ACD8t0)_O O<oe<?t (1)
mZ% 0 = — (0. 2Y + a0p 2 )+ M 2)
o e\ o Potox )|, g
ou
u(t,0) =0, u(0,z) = po(z), E(O’ z) =0, (3)

where u is the deformation in the x direction, p is the mass density, f(t) is the applied
external force, A, is the cross-sectional area, M is the tip mass and g is the gravitational
constant. This model includes a Kelvin-Voigt type term as a first approximation to damping.
The stress-strain relationship in the basic model is

o(t) = G(&(t), &(t)),

where € is the finite strain (since we are interested in large deformations) and it is given by

~_8_U+1 a_U2— +12
6_8:(: 2 \ 0z ¢ 26’

where ¢ = % is the usual infinitesimal strain of linear elasticity. However, modeling the

nonlinear behavior between the stress and the finite strains é (which are themselves nonlinear
functions of the infinitesimal strains €) can be equivalently formulated in terms of nonlinear
relationships between the stress and the infinitesimal strains €. Hence, we have equivalently
assumed in obtaining (1) a stress-strain relationship

_ 0Ou 32u 8u 0%u
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Figure 1: Elastomer rod under tension for dynamic free release experiments.

instead of a similar law involving the finite strains €.

The well-posedness of the initial-boundary value problem associated with (1)-(3) was
shown by Banks, Gilliam, Shubov in [14], while the convergence properties of the corre-
sponding parameter estimation problem were established by Banks, Pinter in [15]. These
results are valid for a broad class of nonlinearities. This is important since comparison
between experimental data and numerical calculations suggested that the neo-Hookean non-
linearity (found in literature as a first approximation to the nonlinearity exhibited by rubber
materials) is not adequate to describe the behavior of filled elastomers [13].

An adequate form of g, and the unknown constants p and Cp were determined using
parameter estimation techniques. Data for the inverse problem were provided by dynamic
free release experiments. The elastomer was suspended vertically with the top end (z = 0)
fixed, and a frame was attached to the lower end (see Figure 1). Varying amounts of extra
mass were attached to this frame, which also served to house an accelerometer. Another
accelerometer placed at the top of the sample was used to verify the clamped boundary
condition at the fixed end. For the free release experiment, the rubber rod was lifted together
with the frame and the tip mass so that no compression or extension occurred. Then the
support was removed, allowing the mass to fall freely. This type of experiment was repeated
with unfilled and lightly filled carbon black samples, while a similar experiment was done
with a highly filled sample with a 9.29 Ib tip mass.

The force data collected by a load cell on top of the sample were used in estimating the
unknown parameters ¢ = (g, p, Cp) in (1)-(3) by minimizing

1 _ )
J(q) = 3 > |z — Ao (2,05 q)]
i=1
over ¢ in some admissible parameter space (). Here, z;, i = 1... N, represent the experimental
observations at times ¢; of the force at the fixed end, and o is given by (4), where u is the
solution of (1)-(3) corresponding to the parameters g.
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Computational results indicated that (i) a nonlinear function g, is necessary in the stress-
strain relationship, (ii) the stress-strain relationship (4) is adequate to describe unfilled
rubber samples (Figure 2) and (iii) to capture the dynamics of filled elastomers, hysteresis
must be taken into account. Based on models for hysteretic damping in the literature (see

Linear fit to load cell cdata for unfilled rubber sample, small weight Linear fit to load cell cdata for unfilled rubber sample, small weight
T T T T T T T T T T T T

35

Force (pounds)
Square Window FFT

0 0.‘5 i 115 2‘ 2‘,5 é 3‘.5 4 0 ':": 1‘0 1‘5 2‘0 2‘5 30
Time (seconds) Frequency (hz)

Figure 2: (a) Time domain approximation and (b) the FFT of the solution vs. the data:

Model with a four-term piecewise linear g,.

[16] and references therein) we assumed a Boltzmann-type stress-strain law of the form

t

o(t) = ge(e(t)) + Cpe(t) + / N Y(t - s)%gv(a(s), £(s))ds, (5)
where Y is the memory kernel, and g. and g, are nonlinear functions accounting for the
elastic and viscoelastic nonlinear responses of the elastomer, respectively. This stress-strain
law implies that the stress depends not only on the current strain and strain rate but also on
the history of the strain and the strain-rate. It is very important to note that the stress-strain
law (5) contains various standard internal strain or internal variable formulations as special
cases. The anelastic displacement field (ADF) models of Lesieutre [17, 18] for composite
materials exhibiting both elastic and anelastic displacement fields are formulated on the
assumption that the host elastic material contains anelastic materials with internal strains
g1 which are elastic strain driven. That is, the constitutive laws have the form

O'(t) = Elé'(t) - Eg&l(t),
where the internal strain is given by
) 1
61(t) + ;61(?5) = Cz€(t), 61(0) = 0, (6)

or equivalently,
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Several generalizations of this formulation exist, e.g., Johnson et.al. [19], suggest that the
internal strain is strain rate driven, i.e.,

() + %al(t) = eé(t). 1)

Our Boltzmann-type law (5) (under appropriate assumptions on the past memory from —oo
to 0) corresponds to an internal strain model of the form

G0)+ ~ert) = Sau(el), <), £1(0)=0, Q
This form was chosen after we found that neither (6) nor (7) provided laws that could
describe our data.

Experimental observations of the quasi-static behavior of elastomers indicate that these
materials possess different nonlinear viscoelastic responses in loading (¢ > 0) and unloading
(¢ < 0). This led to our choice of a piecewise continuous form for the viscoelastic response
function g,

et = { 9D S0 o)

Here we require g,; and g,q to be continuous (and generally nonlinear) functions. The
difference between loading and unloading is more pronounced as the amount of filler increases
in the material. We define points ¢;, ¢ = 1,..., M, as the “turning points,” or the points in
time for which € = 0. The function g, need not be continuous at the turning points, so we
must interpret the derivatives in (5),(8) as distributional derivatives. That is, delta functions
are involved in differentiating the composite functions g,(e,€), or equivalently, integration
by parts is valid. For experimental and computational purposes, we further assume that
any motion in the material prior to each experiment is negligible. That is, we assume that
4 g,((t),é(t)) =~ 0 for all t < 0. Hence we may approximate (5) by

a(t) = ge(e(t)) + Cpé(t) + /Ot Y(t - 8)%91)(6(8), £(s))ds. (10)

We integrated by parts in (10) and obtained the model in variational form

i~ Acge (G0 + Y ORGo giae) + [ V= 91(GH). (s

O gy + 2V (0= (=1 g G (0)) — g G2 )]) = @) i v (1)
Ou

u(t,0) =0, u(0,z)= ¢y, E(O,x) =0 (12)

for an appropriately chosen Hilbert space V. This presumes, of course, that we have sufficient
smoothness so that evaluation of % at ¢; makes sense and ;—z(gvi(g—Z(ti))), ,_%(gvd(%(ti))) €
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V*. For this particular example, one takes V = H}(0,¢) = {¢ € L*(0,4)|¢' € L?(0,¢), ¢(0) =
0} and p = pA. — Mé,, F(t) = —f(t)d;, where §,(z) is the Dirac function with atom at
z = £. The important question of well-posedness of the system (11)-(12) is treated carefully
in [20]. We have shown that under certain assumptions there exists a unique weak solution
of the system (11)-(12). This result uses the Minty-Browder monotonicity method to treat
the nonlinearities in the system and is valid for a broad range of elastic and viscoelastic
response functions.

2.2 Experimental and computational results

We first tested the hysteretic model (11)-(12) in the quasi-static behavior of filled rubber
samples under uniaxial tension. Two different types of quasi-static pull tests were conducted.
The first type (Type I) includes a sequence of loading and unloading the sample to produce
load-displacement curves with decreasing maximum strain levels. In the second type of ex-
periment (Type II) we created a sequence of strain loops that have decreasing maximum
strain levels as before, but instead of a fixed minimum strain level we used progressively
increasing minimum strain levels. (Full description of the quasi-static and dynamic tests
and results are given in our paper [21].) We tried a number of linear and nonlinear func-
tions for g. and g,, including the special cases of g, and g, linear with g, = gvi = Guva-
The relative errors discussed in [22] suggested that nonlinear functions are necessary for
both g. and g,. Additional curve fitting studies outlined in [22] led to our choice of cubic
polynomials for g., g,; and g,q. That is, we chose parameterized nonlinearities of the form
9e(2) = 23 Eirt) gui(z) = Y3, aix?, gea(z) = T2, bixt, where Ej, a4, b;, i = 1,2,3 are
real constants. Note that these response functions include no constant terms. Here we re-
quire g¢(0) = g»i(0) = gvq(0) = 0 so that a zero strain will yield a zero stress according to our
stress-strain relation. Based on additional studies detailed in [22], we chose an exponential
form Y (s) = e~7 for the memory kernel. Such an exponential form generates totally nested
hysteresis loops in the stress-strain curves, a feature also observed in our data.

The parameters 7, E;, a; and b; were estimated by setting up a least squares minimization
problem using one or two of the outer stress strain data loops from the experiments. Figure
3 shows results for a highly filled sample in Type I and Type II experiments, respectively.
While the inverse problem was “trained” on the largest loop only in Type I, and the two outer
loops in the Type II experiment, we can see that there is a very good agreement between the
data and the model predicted inside loops. Similar results were obtained for medium-filled
natural rubber and silica-filled silicon samples. More details are given in [21].

Our hysteretic model (11)-(12) was also tested on a series of dynamical experiments with
different types of filled rubber samples. We used the same free release experiments that
were described earlier. Since the dynamical behavior of the unfilled natural rubber sample
was adequately described by the basic model without hysteresis, we began our hysteresis
investigations using the lightly filled sample. For given p, Cp, ge, g, and Y we solve the partial
differential equation (11)-(12) forward in time, and obtain the displacement u(¢,z), 0 < z <
. The data collected in these experiments provides us with the force at the top of the sample
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Figure 3: (a) Model prediction for Type I CB-h data and (b) Model prediction for Type II
CB-h data.

(z = 0), and we compare it to the force predicted by the model at the same point, given by

0%u ou d Ou o%u

S (t.0)+ (S 0) + [ V(0= 8) oo (5,0), 2 (5,0))ds

Ac y = Ac ;
o(t,0) Cp oz ds” oz otox

where we use our computed solution u(t,z) to find 2%(¢,0) and %(t, 0). Our goal is
to find p,Cp, g, 9o and Y so that the model predicted force at £ = 0 best matches the
data collected by the load cell. A parameter identification problem was set up to find

p,Cp, E1, Ey, E3, a1, a5, as3,b1, by, by, 7 (collectively denoted by ¢) such that

N
J(@) = |z — Ao(E,0;9))
izl

is minimized. Here, once again, the z;, ¢ = 1,..., N, are the data collected by the load
cell, and o(t;,0;q) is given as described above. The particular forms for g., g, and Y were
motivated by their success in the quasi-static case. In our computations we used linear splines
for spatial discretization. In solving the system (11)-(12) forward in time, the treatment of
the hysteresis integral proved to be very time consuming. Since this computation needs to
be repeated for each set of parameters during the optimization, the time required for the
computational parameter identification process was very extensive. Hence, we formulated
an equivalent system to (11)-(12) using an internal variable ¢; = ¢1(¢;7), and used it in the
above framework for our subsequent calculations. This system is given by

0%u Bu 0

S0 OPu 0
p ot? «Cp otdzx? Oz

ot dtgv Ox’ Otox

(Acge(g—Z) +Ac€1) =F() in V* (13)

(14)
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Figure 4: Fit to data with model using a nonlinear g, g, : (a) Time domain approximation
and (b) the power spectrum of the approximation and the data for a lightly filled sample
with 3 1b tip mass.

6—u(0,x) =0, &(0,z)=0,

T (15)

u(t,0) =0, u(0,z) = ¢y,
where, in general, the derivatives of g, in (14) are distributional in the sense described earlier.
The parameter identification problem was solved using MATLAB optimization routines.
Typical results for the identification problem are shown in Figure 4, where a 3 lb tip mass
was used at the bottom of the sample. The identification problem was also run on data
obtained from experiments with 2 1b and 1 1b tip mass added to the lightly filled sample.
We found a similar good agreement between the data and the model [21]. However, the
identified coefficients were not entirely consistent across experiments, although they should
describe the same material. This variation is probably caused by the substantially different
stress and strain rate ranges involved in the experiments, and suggests that the model should
be refined to account for these differences.

We repeated the experiment with a highly filled sample having a 9.29 1b tip mass. In this
case our best fit depicted in Figure 5 (a) has deteriorated. Thus we turned to a modification
of our model to obtain a better approximation to the force data.

This modification was motivated by our earlier efforts as well as those reported in the
literature on similar problems involving hysteretic effects and internal strain models (for
details, see the discussions in [21]). We next considered the model using two internal variables
e1(t;11), €2(t; 72) with different decay parameters 71, 72, given by

_0%u Bu 0 ou ot

pw — ACCDW — 3_:1: (Acge(a—x) + Ac€1 + Ac€2) = F(t) inV (16)
1 d ou 0*u

.1 d Odu o'u 1

f=—at 59050 e (17)
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highly filled sample highly filled rubber sample
T T T T T T

30

30

T T
—-=- computed|
data

T ) -
Figure 5: (a) Best approximation for the highly filled sample with one internal variable using
data in the time interval [0,0.95] and (b) Best approximation for the highly filled sample
with two internal variables on the full time interval. Identification based on data from the
time interval [0, 0.95].

o 1€+d (8u 0%u
2 — 7_22 dtg'v

) (18)

oz’ Otdx
u(t,0) =0, u(0,z) = ¢y, Z—?(O,m) =0, £(0,2) =0, &(0,z)=0. (19)

After parameter estimation, this model provided a very satisfactory fit to the data with
the relative error between the data and the computed force being 4.1%. This fit, depicted in
Figure 5 (b), was obtained by using data only from the time interval [0, 0.95], and resulted
in a model that accurately simulated the data on the interval [0, 1.6].

2.3 Nonlinear internal variable models

Our last result for the highly filled sample and the variation in the parameters for the lightly
filled rubber rod suggested that we might try to generalize our model to better describe
the behavior of highly hysteretic samples. Thus we next considered internal variable models
with nonlinear internal dynamics

_0%u Ou 0 Ou N
Pw — ACCDW ~ ( cge(a—x) + Acé‘l) =F(t) inV
) . d Ou 0*u

€1 =—9%(e1) + %gv(aa m)

u(t,0) =0, u(0,z) = o, 2—1;(0,:1:) =0, €(0,2) =0.

In [23] we showed that this system has a unique weak solution. We also note that we in fact
generalized the previous existence-uniqueness result in the sense that we no longer require
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monotonicity of the nonlinear functions g, gv;, gva- Instead, they are assumed to satisfy a
local Lipschitz property and other assumptions similar to those used before. We remark
that similar techniques were successfully employed to establish existence-uniqueness of weak
solutions for linear evolution equations of second order in ¢ in [24] and for semilinear second
order evolution equations where the nonlinear term satisfies a global Lipschitz condition
in [25]. In [26] we used similar techniques to study a nonlinear beam equation where the
nonlinearity satisfies only a local Lipschitz condition.

2.4 Model development, experimental and numerical results for simple shear

The previous model development and identification process was also carried out for filled
elastomers undergoing simple shear deformation. A dynamic experiment was designed that
involved a “double sandwich” fixture with layers of filled rubber at the interfaces (see Figure
6). The side bars were fixed, while the middle bar was perturbed by an impulsive hammer
hit, and accelerometer and load cell data were collected as in the experiments for extension.
For simple shear the model developed and used was

0%u 0 ou 0u
Ac— - A Ac e\ A Ac Y. Ac
PRB2 " Be l 9 g2) T AL g5, T 51]
0%u ou 0%u
M .0 = A 0.5+ Coge ]|+ 110+ g
i — _1 + i (% 62_“)
dt61 - Tsl dtgv oz’ Otdx
u(t,0) = 0, u(0,z) = o, %(o,x) ~0, &1(0,2) =0,
Load cell
extramass

T

hammer hit

Figure 6: Schematic of the initial shear experimental device.
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In the identification process we used the accelerometer data to approximate the unknown
parameters, i.e., we solved the least-square minimization problem

1 X 0%u
J = EZ a; — o2 (t,,f Q)‘

where a; represent the collected data, and ¢ is a vector of unknown coefficients. The ex-
periment was performed with lightly filled and highly filled rubber samples with different
amounts of extra mass. In general, we found that the data collected with no extra mass
on the sample could be approximated well with the above model even when the viscoelastic
response g, is assumed to be linear. This is not surprising, since the maximum strain levels
in these type of experiments were below 10%. Our best fit for the highly filled sample with
no extra mass is depicted in Figure 7. However, when extra mass was involved to achieve
larger deformations and strain levels, the experiment did not provide suitable data, since
additional “tilting” modes became excited that could not be accounted for by the above
one-dimensional model.

A225 (b) 1
T T

T
-—- computed|
data

Figure 7: Highly filled rubber sample in shear with no extra mass

The experiment was redesigned to enforce simple shear in the sample with no additional
deformations. These new experiments involved four “double sandwich” samples with highly
filled rubber at the end of four arms of a fixture. The arms were latched down to achieve
a prescribed initial strain (50%-100%) in the sample and subsequently released. We again
collected accelerometer and load cell data. The identification problem was first performed
for the data obtained for 100% initial strain. We tried different hysteretic stress-strain rela-
tionships in our numerical simulations. We note that a linear viscoelastic response function
g» Was no longer adequate to describe the data in this higher strain regime. Thus, we initially
assumed

ou 0%u o1 ou
nge(ax) CD(?(? + €1, 51+;81:gv(%)a
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where g. and g, are cubic polynomials and g, does not depend on &, (i.e., gyi = gua in (9)).
The parameters that provided the best fit in this case did not work well for the 70% and
50% initial strain experiments. Thus we next used the full nonlinear hysteretic model (i.e.,
Gvi 7 gva 10 (9)) to approximate the 100% initial strain data. The best fit in this case
is depicted in Figure 8 (a). We found that the set of parameters identified for this case
described the data with 70% initial strain with very good accuracy (see Figure 8 (b)).

data and the values data and the values

T T T T T T T T T
— — computed — — computed
— data A — data

\
7

acceleration (g)
acceleration (g)

oo
AW N P O kN ow
T T T T

I I I I I I I I I _ I I I I I I I I I
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
time (sec) time (sec)

o

Comparison of load cell data and the model predicted values Comparison of load cell data and the model predicted values

T T T T T T T T T
— - computed — - computed
— data 10+ N\ — data

4 A
L N 4

Ioad cell (Ib)
N
5

load cell (Ib)

- I I I I I I I I I 15 I I I I I I I I I
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
time (sec) time (sec)

Figure 8: (a) Approximation result for the highly filled sample in shear with ~ 100% strain
initial condition and (b) The same parameter set simulating the highly filled sample in shear
with ~ 70 % strain initial condition.

2.5 Molecular based reptation models

The above models and the nonlinear extensions of Section 2.3 have not, to date, provided
insight into the underlying mechanisms for tensile and/or shear deformations in filled rub-
ber. This is not unexpected since the approaches described above are based on pseudo-
phenomenological formulations. More recently ([5, 27]), we have turned to a different ap-
proach based on molecular arguments which, as we shall see, lead precisely to the class of
models based on a Boltzmann hysteresis formulation. As usual, one begins with force and
moment balance and seeks constitutive laws (such as (10)) for the viscoelastic stress term
Ovisco in
J(t; T) = O-elast(ga 5) + Uvisco(sl('))a
ou

where ¢ = 37 is the infinitesimal strain and ¢; is an “internal strain” variable on which y;sc,
depends in an hysteretic manner. As described above, we found that a reasonable description
of the data could be given with the typical stress-strain relationship

o(t) = G (e(t), £(1)) + / ye 5 —gv( (5), £(s))ds,
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where 7 is a relaxation parameter, g, is as defined in (9), with cubic polynomials g,;, gy, and
Ge = el &v) + Cperz ata as in (4). We have already observed that this expression is equivalent
to

o(t) = ge(e(t), £(2)) + e (t;7),

where, for a given “relaxation parameter” 7, the internal strain £,(¢;7) satisfies (8). In fact,
we found that highly filled rubbers required multiple relaxation times 71,72 as in (16)-(19)
to obtain good model fits to the data. As we shall describe, molecular based formulations,
where microscopic relaxation parameters vary across the population of molecules in the
material, lead to internal dynamics of the form (8),(9). When combined with a Prohorov
metric framework (see [28, 29]) for uncertainty in internal dynamics, these ideas lead to the
computational models we have used above. Indeed, the molecular based approach leads to
a general class of models with uncertainty or randomness in the stress

o(t, @; P) = Go(e(t, ), é(t, 2)) + 7 /T e1(t, @; 7)AP(7), (20)

where P is a probability distribution over the set 7 of possible relaxation parameters, and
e1(t; T) satisfies, for each 7 € T,

Gtz ) + %sl(t, 2:7) = £(t o)h(e(t, o).

For the reptation model derivation in [5], one begins with the Doi/Edwards [3] stick-slip
molecular models as embodied in the continuous tube reptation models of Johnson/Stacer
[4] wherein polymer materials such as rubber are postulated to be composed of two types of
molecules. In tensile deformations, one denotes by L(t) the length of chemically cross-linked
or CC molecules, while £(¢) denotes the length of physically constrained or PC molecules.
To use stick-slip models in continuum simulations of reptation in rubbers, one considers
networks of “cells” or boxes of parallel-sided CC boxes and PC boxes with sides of length
(principal stretches)

)\c=1+6:1+%, Ap —1+61—1+%
Ox o’
respectively. Here u. denotes the deformations of the CC box and u, denotes the deforma-
tions of the PC box. Using a linear stick-slip assumption as in [4], and strain energy densities
based on experiments of Young and Danik (see [5, 27] for details), one obtains as a limit of
PC response to step tensile deformations of the CC molecules, the ¢,; coupled dynamics

5+16 €1+61
! T 1= 1+¢

However, if one replaces the linear assumption of [27] by a nonlinear stick-slip hypothesis
(which is the basis of the work in [5]), one obtains a more general nonlinear, dynamical
relationship between ¢ and &; given by

b+ e =ef((1+e)/(1+€),
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Expansion and truncation of higher order terms lead to equations of the form
. : 2 3
€1+ ;51 = é(ag + aqe + aze” + aze’), (21)

which are of the same form as the internal variable model (8),(9) with g,; and g,4 cubic
polynomials. For the corresponding contributions to o from the strain energy densities
of Young-Danik/ Johnson-Stacer with the nonlinear stick-slip hypothesis, one obtains a
contribution to the rate independent strain g° (after expanding f in a Taylor series and
dropping higher order terms) of the form

95(5, 61) - gcubic(g) + Y1€1,

where £, is as before (i.e., the internal strain satisfying (21)). Thus, the total stress-strain
relationship can be written in the form (20). If the measure P of (20) has atoms at 7; and
T2, (i-e., the measure is composed of Dirac measures concentrated at 7 and 73), then the
constitutive law leads precisely to the model

o(t,x; P) = ge(e(t, x),é(t, x)) + mer(t, x; 1) + Yoea(t, ;5 72),

which was used in the data fit of Section 2.2 with model (16)-(19).

3 Concluding Remarks

In the above note we outlined our progress to date in the development of nonlinear dynamic
models for inactive filled elastomers. Substantial experimental validation for our approach is
provided both in the quasi-static and dynamic cases in uniaxial tension and in the dynamic
case in simple shear. Current efforts involve refinements to these models and a compar-
ison with newly developed molecular based models [5, 27] that emphasize uncertainty or
randomness across populations of molecules in a heterogeneous material.

Acknowledgments

This research was supported in part by the U.S. Air Force Office of Scientific Research under
grants AFOSR F49620-01-1-0026 (HTB and NGM) and AFOSR F49620-03-1-0185 (GAP).

References

[1] H.T. Banks, R.C. Smith and Y. Wang, Smart Material Structures: Modeling, Estimation
and Control, Masson, Paris and John Wiley and Sons, Chichester, 1996.

[2] M.V. Gandhi and B.S. Thompson, Smart Materials and Structures, Chapman and Hall,
London, 1992.

[3] M. Doi and M. Edwards, The Theory of Polymer Dynamics, Oxford, New York, 1986.



Moultiscale Considerations 16

[4] A.R. Johnson and R.G. Stacer, Rubber viscoelasticity using the physically constrained
systems’ stretches as internal variables, Rubber Chem. Tech. 66, 567-577 (1993).

[6] H.T. Banks, N.G. Medhin and G.A. Pinter, Nonlinear reptation in molecular based
hysteresis models for polymers, in progress.

[6] R.M. Christensen, Theory of Viscoelasticity: An Introduction, 2nd ed., Academic Press,
New York, 1982.

[7] W.N. Findley, J.S. Lai and K. Onaran, Creep and Relazation of Nonlinear Viscoelastic
Materials, North-Holland Series in Applied Mathematics and Mechanics, North-Holland
Publishing Company, Amsterdam, 1976.

[8] J.D. Ferry, Viscoelastic Properties of Polymers, John Wiley & Sons, Inc., New York,
1980.

[9] R.W. Ogden, Non-linear Elastic Deformations, Ellis Horwood Limited, Chichester,
1984.

[10] R.S. Rivlin, Large elastic deformations of isotropic materials, I, II, III., Phil. Trans.
Roy. Soc. A 240, 459-525 (1948).

[11] R.A. Schapery, On the characterization of nonlinear viscoelastic materials, Polymer
Engineering and Science 9, 295-310 (1969).

[12] H.T. Banks and N. Lybeck, Modeling methodology for elastomer dynamics, in Systems
and Control in the 21st Century, (C. Byrnes, et.al., eds.), Birkhduser, Boston, 1996,
37-50.

[13] H.T. Banks, N.J. Lybeck, M.J. Gaitens, B.C. Mufioz and L.C. Yanyo, Computational
methods for estimation in the modeling of nonlinear elastomers, CRSC-TR95-40, NCSU,
December 1995; Kybernetika 32, 526-542 (1996).

[14] H.T. Banks, D.S. Gilliam and V.I. Shubov, Global solvability for damped abstract
nonlinear hyperbolic systems, Differential and Integral Equations 10, 309-332 (1997).

[15] H.T. Banks and G.A. Pinter, Approximation results for parameter estimation in non-
linear elastomers, CRSC-TR96-34, NCSU, December 1996; Control and Estimation of
Distributed Parameter Systems, (F. Kappel, et.al.,eds.), Birkhduser, Boston, 1998, 1-13.

[16] H.T. Banks and G.A. Pinter, Damping: hysteretic damping and models, CRSC-TR99-
36, NCSU, December 1999; Encyclopedia of Vibrations, Academic Press, London, 2001,
658-664.

[17] G.A. Lesieutre, Modeling frequency-dependent longitudinal dynamic behavior of linear
viscoelastic long fiber components, J. Composite Materials 28, 1770-1782 (1994).



Moultiscale Considerations 17

[18] G.A. Lesieutre and K. Govindswamy, Finite element modeling of frequency-dependent
and temperature-dependent dynamic behavior of viscoelastic materials in simple shear,
Int. J. Solids Structures 33, 419-432 (1996).

[19] A.R. Johnson, C.J. Quigley and J.L. Mead, Large strain viscoelastic constitutive models
for rubber, part I: Formulations, Rubber Chemistry Technology 67, 904-917 (1994).

[20] H.T. Banks, G.A. Pintér, and L.K. Potter, Existence of unique weak solutions to a
dynamical system for nonlinear elastomers with hysteresis, CRSC-TR98-43, NCSU,
November 1998; Differential and Integral Equations 13, 1001-1024 (2000).

[21] H.T. Banks, G.A. Pintér, L.K. Potter, M.J. Gaitens and L.C. Yanyo, Modeling of non-
linear hysteresis in elastomers under uniaxial tension, J. Intelligent Material Systems
and Structures 10, 116-134 (1999).

[22] Y. Zhang, Mathematical formulation of vibrations of a composite curved beam structure:

Aluminum core material with viscoelastic layers, constraining layers and piezoceramic
patches, Ph.D. Thesis, N.C. State University, May 1997.

[23] A.C. Ackleh, H.T. Banks and G.A. Pinter, Well-posedness results for models of elas-
tomers, J. Math. Analysis and Applications 268, 440-456 (2002).

[24] R. Dautray and J.L. Lions, Mathematical Analysis and Numerical Methods for Science
and Technology, Volume 5, Evolution Problems I, Springer, New York, 2000.

[25] J. Ha and S. Nakagiri, Existence and regularity of weak solutions for semilinear second
order evolution equations, Funkcialaj Fkvacioj 41, 1-24 (1998).

[26] A.C. Ackleh, H.T. Banks and G.A. Pinter, On a nonlinear beam equation, Applied
Math. Letters 15, 381-387 (2002).

[27] H.T. Banks and N.G. Medhin, A molecular based dynamic model for viscoelastic re-
sponses of rubber in tensile deformations, CRSC-TR00-27, NCSU, October, 2000; Com-
munications on Applied Nonlinear Analysis 8, 1-18 (2001).

(28] H.T. Banks and K. Bihari, Modeling and estimating uncertainty in parameter estima-
tion, CRSC-TR99-40, NCSU, December 1999; Inverse Problems 17, 1-17 (2001).

[29] H.T. Banks, D. Bortz, G.A. Pinter and L.K. Potter, Modeling and imaging techniques
with potential application in bioterrorism, CRSC-TR03-02, NCSU, January 2003; Chap-
ter 6 in Bioterrorism: Mathematical Modeling Applications in Homeland Security, (H.T.
Banks and C. Castillo-Chavez, eds.), Frontiers in Applied Mathematics, Vol.28, STAM,
Philadelphia, 2003, 129-154.



